

ENGINEERING NOTE

TUNING THE PID COEFFICIENTS

PURPOSE

The purpose of this engineering note is to provide the user of the TC01 and the TC10 digital temperature controllers with the necessary information to adjust or "tune" the control loop coefficients. By tuning the controller coefficients the user can optimize the overall control system response to a wide range of processes.

DEFINING FEEDBACK CONTROL

Control systems can be classified as "open loop" or "closed loop". Figure 1 shows the block diagram of an open loop type of control system. In this type of system the input is processed by the controller and then drives the process, producing the output. The problem with the open loop system is that the output varies as the controller or process transfer function changes. For example if the controller were a simple amplifier and its gain changed by 10% then
 the output would also change by 10%, assuming that the process is linear. The open loop system, however, does have a couple of advantages. First is simplicity and second is stability.

Figure 2 gives the block diagram for a closed loop negative feedback control system. The prime difference between the open and the closed loop systems is the generation and utilization of the error signalE(S). The primary reason for using the closed loop control system is to reduce the sensitivity of the system to parameter variations. In order to illustrate the effects of parameter variations, let us consider a change in the transfer function $G(S)$ such that we have $\mathrm{G}(\mathrm{S})+$ delta $\mathrm{G}(\mathrm{S})$. Then in the open loop case, the change in the transform of the output is

$$
\mathrm{C}(\mathrm{~S})=\mathrm{G}(\mathrm{~S}) \mathrm{R}(\mathrm{~S})
$$

FIGURE 2
In the closed loop system we have
or

$$
C(S)=G(S) R(S) /[1+G(S) H(S)]
$$

$$
\mathrm{C}(\mathrm{~S}) / \mathrm{R}(\mathrm{~S})=\mathrm{G}(\mathrm{~S}) /[1+\mathrm{G}(\mathrm{~S}) \mathrm{H}(\mathrm{~S})]
$$

Taking partial derivative with respect to $\mathrm{G}(\mathrm{S})$

or the change in the transfer function of the closed loop system is reduced by the factor $[1+\mathrm{G}(\mathrm{S}) \mathrm{H}(\mathrm{S})]^{* *} 2$ which is usually much greater than one over the range of complex frequencies of interest.

In a closed loop temperature control system, as shown in figure 3, a temperature sensor measures the chamber temperature. The feedback signal from the sensor is applied to the error detector which compares the desired temperature signal, or set point, with the feedback signal from the sensor. If the desired and the actual temperatures are not the same, the error detector drives the controller to increase or decrease the heat/ cool output as appropriate. A closed loop system thus operates to reduce the error signal to zero so that the process temperature and the set temperature are equal.

FIGURE 3

CONTROL SYSTEM RESPONSE

The manner in which the system responds to a new set point, or an external disturbance, is referred to as the control systems response. The two most common disturbances used to test control systems response are a step input (A/S) or a ramp input (A/S**2). Depending upon the application, a variety of system responses can be designed into a controller by changing the foward loop coefficient. Microprocessor driven digital control systems offer the flexibility of setting the controller response through software commands, providing the capability of tailoring the system precisely to a given application.

Proportional response is the most basic controller response characteristic and is a component of most control systems. In a proportional only system, the corrective action is always proportionate to the difference between the desired output and the set point. In other words, as the error becomes smaller the corrective action reduces. Figure 4 curve A shows the response of a proportional only control system to a step input. Note that the proportional response results in an offset or continuous error since the error signal approaches zero as the error approaches zero. The offset error can be
reduced by increasing the proportional gain, however, there is an upper limit to the loop gain that will still provide a stable system.

In many systems an offset error cannot be tolerated. One way to eliminate the error is to modify the controller response so it also responds to how long the error is present. Such a response is an integral response and combined with proportional results in an overall system response as illustrated in figure 4 curve B. As can be seen the integral will remove the offset error.

A further reduction in set-
 tling time and overshoot, orincreased stability, can be obtained by designing the controller to respond to how fast the error is changing. A response to how fast the error is changing is called a rate or derivative response.

The result of combining the proportional, integral, and derivative responses is illustrated in figure 4 curve C. This form of controller response is called a PID response. As shown, a properly designed PID response provides the shortest settling time and minimum overshoot of the three responses shown. Digital controllers use the PID control algorithm, and allow the user to set the P,I, and D coefficients. Thus the user can tune the PID coefficients for an optimum control system response.

The question now is " How do I pick the PID coefficients? " To address the question we will next present a simple iterative approach and then provide a mathematical approach.

ITERATIVE PID SELECTION

Since mathematically modeling the thermal control system requires that the thermal coefficients of the process and sensor be determined, which in many circumstances is an undesirable use of time, the following iterative approach is presented first.

Iterative PID Selection for TC01

Some temperature processes provide different amounts of energy during heating and cooling. For the TC01, a compromise must be reached when tuning the PID coefficients for heating and cooling. The proportional, integral and derivative coefficients consist of three PID base values and three PID weighting coefficients. It is the three weighting coefficients that may be modified via the PID change command. The user changeable weighting coefficient is 2 raised to the power of a number [$\left.2^{\text {(number) }}\right]$. For example, the actual proportional coefficient (Kp) equals the base fixed value times the user changeable weighting coefficient, i.e. $\mathrm{Kp}=\left(\mathrm{K}_{\text {fixed }}\right)\left(2^{\text {Pnumber }}\right)$

1. Start by finding a proportional coefficient that provides a stable system. The integral and derivative coefficients should be disabled by entering weighting coefficients of -9 . Note that there will be a steady state error that should be ignored for the present.

$$
\text { example bus command: } \quad \text { PID }=-1,-9,-9
$$

$$
\begin{aligned}
& \text { proportional weighting }=2^{* *}(-1)=.5 \\
& \text { integral weighting }=2^{* *}(-9)=.001953 \text { ? } 0.0 \\
& \text { derivative weighting }=2^{* *}(-9)=.001953 ? 0.0
\end{aligned}
$$

2. Next bring up the integral weighting until the steady state error is reduced to an acceptable value in a reasonable amount of time. If, by increasing the integral weighting, the system becomes unstable then reduce the proportional weighting slightly.

$$
\begin{aligned}
& \text { example bus command: } \mathrm{PID}=-1,-3,-9 \\
& \text { proportional weighting }=2^{* *}(-1)=.5 \\
& \text { integral weighting }=2^{* *}(-3)=.125 \\
& \text { derivative weighting }=2^{* *}(-9)=.001953 ? 0.0
\end{aligned}
$$

3. Finally bring up the derivative weighting to reduce any overshoot and to increase stability.

$$
\begin{aligned}
& \text { example bus command: } \mathrm{PID}=-1,-3,-1 \\
& \text { proportional weighting }=2 * *(-1)=.5 \\
& \text { integral weighting }=2^{* *}(-3)=.125 \\
& \text { derivative weighting }=2 * *(-1)=.5
\end{aligned}
$$

Iterative PID Selection for TC10, PC1000, TC02, PC100, PC100-2 and PC10

The TC10 has two sets of PID coefficients, one for heating and one for cooling. The proportional, integral and derivative coefficients are entered as simple floating point numbers and may be modified via the PID change command. The following example shows how to select the PID coefficients for heating. A similar approach can be followed for selecting the PID coefficients for cooling.

The heater element is full on when $\mathrm{P}^{*} \mathrm{ABS}$ (error) >1 and the cooling system is full on when $\mathrm{P}^{*} \mathrm{ABS}$ (error)<-1; where, $\mathrm{P}=$ Proportional coefficient for heat or cool error $=$ Difference between the set temperature and the process temperature

1. Start by finding a proportional coefficient that provides a stable system. The integral and derivative coefficients should be disabled by entering 0 . Note that there will be a steady state error that should be ignored for the present.
example bus command: $\mathrm{PIDH}=0.25,0.0,0.0$
proportional coefficient $=0.25$
integral coefficient $=0.0$
derivative coefficient $=0.0$
2. Next bring up the integral coefficient until the steady state error is reduced to an acceptable value in a reasonable amount of time. If by increasing the integral coefficient the system becomes unstable then reduce the proportional coefficient slightly.
```
example bus command: PIDH = 0.25, 0.001, 0.0
proportional coefficient =0.25
integral coefficient =0.001
derivative coefficient =0.0
```

3. Finally bring up the derivative coefficient to reduce any overshoot and to increase stability.
example bus command: $\mathrm{PIDH}=0.25,0.001,0.10$
proportional coefficient $=0.25$
integral coefficient $=0.001$
derivative coefficient $=0.10$

In the above iterative approach the step input is performed by instructing the controller to go to a temperature that is a significantly different than its current temperature, with the Rate set to a high value. The time response is obtained by monitoring the process temperature. The optimization can be performed manually or with a remote bus controller by plotting the process temperature versus time after the temperature step is given.

LINEAR CONTINUOUS MODEL

Figure 5 shows the block diagram of a continuous data, linear PID control system acting on an error signal $\mathrm{E}(\mathrm{S})$. The proportional block simply multiplies the error signal by a constant KP , the integral block multiplies the integral of $\mathrm{E}(\mathrm{S})$ by the integral coefficient KI , and the derivative block multiplies the time derivative of the error signal by the derivative coefficients KD. The KH block depicts the function of conversion from the PID output to heat flow rate into the temperature chamber. The Gp1(S) block repre-

FIGURE 5
Figure 6 shows the diagram of a typical temperature chamber with the simplified equivalent circuit where:

$$
\mathrm{Ct}=\mathrm{Q} / \mathrm{Tc}
$$

or

$$
\mathrm{qc}(\mathrm{t})=\mathrm{Ct}(\mathrm{~d} \mathrm{Tc}) / \mathrm{dt}
$$

also

$$
\mathrm{Rt}=(\mathrm{Tc}-\mathrm{Ta}) / \mathrm{qo}(\mathrm{t})
$$

or

$$
\mathrm{qo}(\mathrm{t})=(\mathrm{Tc}-\mathrm{Ta}) / \mathrm{R}
$$

differential equation for the chamber is:

$$
\mathrm{qi}(\mathrm{t})=\mathrm{qc}(\mathrm{t})+\mathrm{qo}(\mathrm{t})
$$

or

$$
\mathrm{qi}(\mathrm{t})=[\mathrm{Ct}(\mathrm{~d} \mathrm{Tc}) / \mathrm{dt}]+[(\mathrm{Tc}-\mathrm{Ta}) / \mathrm{Rt}]
$$

and its Laplace transform is:

$$
\mathrm{Qi}(\mathrm{~S})=\operatorname{Ct}(\mathbf{S}) \operatorname{Tc}(\mathrm{S}) \mathrm{S}+[\operatorname{Tc}(\mathbf{S})-\operatorname{Ta}(\mathrm{S})] / \operatorname{Rt}(\mathbf{S})
$$

or

$$
\mathrm{Qi}(\mathrm{~S})=[\mathrm{CtTcRtS}+\mathrm{Tc}-\mathrm{Ta}] / \mathrm{Rt}
$$

or

$$
\mathrm{Qi}(\mathrm{~S}) \mathrm{Rt}=\mathrm{Tc}(\mathrm{CtRtS}+1)-\mathrm{Ta}
$$

therefore,

$$
\mathrm{Tc}=[\mathrm{Qi}(\mathrm{~S}) \mathrm{Rt}+\mathrm{Ta}] /[\mathrm{CtRtS}+1]
$$

where

$$
\mathrm{Qi}(\mathrm{~S})=(\mathrm{Kp}+\mathrm{Ki} / \mathrm{S}+\mathrm{KdS}) \mathrm{Kh}
$$

the Laplace transfer function of chamber is:

$$
\mathrm{G}(\mathrm{~S})=\mathrm{Tc}=\frac{[\mathrm{KpKhRtS}+\mathrm{KiKhRt}+\mathrm{KdKhRtS} \wedge 2+\mathrm{TaS}]}{[\mathrm{S}(\mathrm{CtRtS}+1)]}
$$

Figure 7 shows the equivalent circuit for the temperature sensing probe where:

$$
\mathrm{Tp}=(1 / \mathrm{Cp}) \quad[\mathrm{q}(\mathrm{t}) \mathrm{dt}]
$$

and

$$
\mathrm{q}(\mathrm{t})=[\mathrm{Tc}-\mathrm{Tp}] / \int \mathrm{Rp}
$$

and its Laplace transform is:

$$
\mathrm{Tp}(\mathrm{~s})=[\mathrm{Tc}-\mathrm{Tp}] /[\mathrm{CpRpS}]
$$

where $\quad \mathrm{CpRp}=\mathrm{tp}$
or $\quad \mathrm{Tp}=\mathrm{Tc} /[\mathrm{RpCpS}+1]$
the Laplace transfer function of probe is:

$$
\mathrm{H}(\mathrm{~S})=\mathrm{Tp} / \mathrm{Tc}=1 /[\mathrm{tpS}+1]
$$

FIGURE 6

FIGURE 7

Now we will construct the closed loop error equation. The error signal for a closed loop system is:

$$
\mathrm{E}(\mathrm{~S})=\mathrm{R}(\mathrm{~S}) /[1+\mathrm{G}(\mathrm{~S}) \mathrm{H}(\mathrm{~S})]
$$

where $\quad R(S)=1 / S$ for step input
and $\quad \mathrm{Tc}=\mathrm{CtRt}$
SO

$$
\begin{aligned}
& \mathrm{E}(\mathrm{~S})= \\
& \text { (1/S) } \\
& \mathrm{S}(\mathrm{CtRtS}+1)(\mathrm{tpS}+1)+\mathrm{KpKhRtS}+\mathrm{KiKhRt}+\mathrm{KdKhRtS} \wedge 2+\mathrm{TaS} \\
& \mathrm{~S}(\mathrm{CtRtS}+1)(\mathrm{tpS}+1) \\
& =\quad(\mathrm{CtRtS}+1)(\mathrm{tpS}+1) \\
& \text { tpCtRtS^3 }{ }^{\wedge}+\mathrm{tpS}^{\wedge} 2+\mathrm{RtCtS}^{\wedge} 2+\mathrm{S}+\mathrm{KpKhRtS}+\mathrm{KdKhRtS}{ }^{\wedge} 2+\mathrm{KiKhRt}+\mathrm{TaS} \\
& =\quad \operatorname{tpCtRtS}{ }^{\wedge} 2+\mathrm{CtRtS}+\mathrm{tpS}+1 \\
& S^{\wedge} 3(\mathrm{tpCtRt})+\mathrm{S}^{\wedge} 2(\mathrm{tp}+\mathrm{CtRt}+\mathrm{KdKhRt})+\mathrm{S}(1+\mathrm{KpKhRt}+\mathrm{Ta})+\mathrm{KiKhRt} \\
& \mathrm{E}(\mathrm{~S})=\quad \mathrm{S}^{\wedge} 2(\text { Tctp })+\mathrm{S}(\mathrm{Tc}+\mathrm{tp})+1 \\
& S^{\wedge} 3(T c t p)+S^{\wedge} 2(\mathrm{tp}+\mathrm{Tc}+\mathrm{KdKhRt})+\mathrm{S}(1+\mathrm{KpKhRt}+\mathrm{Ta})+\text { KiKhRt }
\end{aligned}
$$

dividing by TcTp gives,

$$
\begin{aligned}
& \mathrm{E}(\mathrm{~S})=\mathrm{S}^{\wedge} 2+\mathrm{S}(1 / \mathrm{tp}+1 / \mathrm{Tc})+1 / \mathrm{Tctp}
\end{aligned}
$$

The time response of the control system maybe calculated by finding the roots of the denominator of $\mathrm{E}(\mathrm{S})$, performing partial fraction expansion, and then transforming back to the time domain. A Fortran program, called CHPID, that does exactly this is included at the end of this note. To illustrate the effect of the PID coefficients on the time response, figure 8 shows the response of a proportional only system. Note the steady state error. Figure 9 gives the time response with the same proportional coefficient and the addition of the integral coefficient. Note that the steady state error has been reduced to zero. Finally in figure 10 and 11 the derivative coefficient is added to reduce overshoot in the time response.

At this point it is necessary to point out that the model presented assumes a linear, continuous, time invariant control system. However, the PID control in the TC01 and TC10 is implemented digitally. Also, there is usually a fixed limit to the amount of energy that can be supplied to the temperature chamber, which causes limiting to occur in the control loop. Therefore the continuous linear constraints of the model are not realized. The accuracy of this model is dependant upon the rate of change of the process temperature relative to the sampling rate of the controller and to the amount of limiting that occurs. Of the two contributors to inaccuracy of this model, since most temperature processes are slow, the limiting of energy to the process is usually the most influential. With these limitations in mind, this model does show the effect of the PID coefficients on the time response of the control system.

NONLINEAR DISCRETE TIME MODEL

To accurately model the sampled data control of the TC01 and TC10 we will add a sampler before the PID blocks and a sampler and zero order hold after the PID section. Figure 12 shows the block diagram of the improved model. Note also that we have replaced the Laplace transform I and D blocks with Z transform approximations. In TC01 and TC10 it is these approximations to integration and differentiation that are actually used. At this point we now have a model that accounts for the digital implementation of the PID control section. The only remaining problem is to model the nonlinearity of the system.

$\frac{\mathrm{KiT}(\mathrm{Z}+1)}{2(\mathrm{Z}-1)}=$ POLYGONAL INTEGRATION APPROXIMATION TO KI / S

$$
\frac{\operatorname{Kd}(\mathrm{z}-1)}{\mathbb{T} Z}=\quad \mathrm{z}\left[\frac{\mathrm{de}(\mathrm{t})}{\mathrm{dt}}\right] * \operatorname{Kd}
$$

FIGURE 12
Since Laplace and Z transforms require a linear system, we will now analyze the system via a simulation program. Figure 13 provides the final model. The major difference between the models in figure 12 and 13 is the replacement of the $\mathrm{Gp}(\mathrm{S})$ and $\mathrm{H}(\mathrm{S})$ in figure 12 with a new $\mathrm{HpHs}(\mathrm{Z})$ equivalent model and the addition of two samplers, a zero order hold, and limiter. The new $\mathrm{GpHs}(\mathrm{Z})$, samplers, and zero order hold are implemented in the simulation program via numerical approximation to the chamber and probe differential equations. As shown in the figure there are two sampling times used.

FIGURE 13

Sample time T1 is the sampling rate while sample time T2 is selected sufficiently faster than T1 to allow the use of straight foward numerical methods. A Fortran source "CHSIM" listing is included at the end of this note. Once the chamber's thermal capacitance "CT" and thermal resistance to ambient "RT", the sensing probe's actual time constant "TP" and the maximum heat flow rate "KH" are determined for the process of interest, the simulation program can be used to pick the required PID coefficients. The simulation program is also useful for determining the sensitivity of the control system to changes in the thermal coefficients.

THERMAL COEFFICIENTS

In this section we will show a quick method of determining the approximate thermal capacitance and the thermal resistance of a chamber. A basic sample program on page 16 can be used to determine an approximate thermal capacitance of a chamber. The two following examples were actual tests run on a $0.7 \mathrm{cu} \mathrm{ft} \mathrm{chamber}$, thermal coefficients of this particular chamber.

Figure 14 shows the simplified equivalent circuit of the temperature chamber.

Example 1 : Thermal Capacitance ($\mathbf{C t}$)

To $=$ initial chamber temp $=24.3^{\circ} \mathrm{C}$
$\mathrm{T}=$ final chamber temp $=37.32^{\circ} \mathrm{C}$

$$
\text { delta temp. }=(\mathrm{T}-\mathrm{To})
$$

$$
\mathrm{t}=\text { test time in seconds }=60 \mathrm{~s}
$$

$$
\mathrm{qc}=\text { heat flow rate in } \mathrm{cal} / \mathrm{s}
$$

$$
\mathrm{Qc}=\text { heat flow in cal }
$$

$$
\mathrm{Kh}=\text { heater gain constant }
$$

$$
\text { voltage applied }=115 \mathrm{~V}
$$

$$
\text { current }=12 \mathrm{~A}
$$

$$
\text { power }=(\text { Voltage })(\text { Current })
$$

$$
=(115 \mathrm{~V})(12 \mathrm{~A})=1.380 \mathrm{KW}
$$

$$
1 \text { watt }=1 \text { joule } / \mathrm{s}=.239 \mathrm{cal} / \mathrm{s}
$$

$$
252 \mathrm{cal}=1054.37 \text { Joules }=1 \mathrm{btu}
$$

$$
\mathrm{q}=(.239)(1380)=329.82 \mathrm{cal} / \mathrm{s}
$$

$$
\mathrm{Kh}=329.82 \mathrm{cal} / \mathrm{s}=1380 \mathrm{~J} / \mathrm{s}=1.31 \mathrm{btu} / \mathrm{s}
$$

$$
\mathrm{Q}=(329.82)(60)=19789.20 \mathrm{cal}
$$

Referring to figure 14 ,

$$
\begin{aligned}
\mathrm{Ct} & =\text { Total heat flow } / \text { delta temp. }=\mathrm{Q} /(\mathrm{T}-\mathrm{To}) \\
& =19789.20 /(37.32-24.3) \\
\mathrm{Ct} & =1519.91 \mathrm{cal} /{ }^{\circ} \mathrm{C}=6359.30 \mathrm{~J} /{ }^{\circ} \mathrm{C}=6.03 \mathrm{btu} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

or

Example II : Thermal Resistance (Rt)

In this case, continuous power was supplied to the chamber and the chamber was allowed to reach thermal equilibrium.

$$
\begin{aligned}
& \mathrm{Ta}=\text { ambient temp }=25^{\circ} \mathrm{C} \\
& \mathrm{Tc}=\text { chamber temp at equilibrium }=150^{\circ} \mathrm{C} \\
& \text { qo }=\text { heat flow rate in cal } / \mathrm{s} \\
& \text { voltage applied }=60 \mathrm{~V} \\
& \text { current }=3 \mathrm{~A} \\
& \text { power }=(60 \mathrm{~V})(3 \mathrm{~A})=180 \mathrm{~W} \\
& 1 \text { watt }=1 \mathrm{Joule} / \mathrm{s}=.239 \mathrm{cal} / \mathrm{s} \\
& 252 \mathrm{cal}=1054.37 \text { joules }=1 \mathrm{btu} \\
& \text { qo }=(.239)(180)=43.02 \mathrm{cal} / \mathrm{s}
\end{aligned}
$$

Referring to figure 14 ,
or

$$
\mathrm{Rt}=(\mathrm{Tc}-\mathrm{Ta}) / \mathrm{q}=(150-25) / 43.02
$$

$$
\mathrm{Rt}=2.70^{\circ} \mathrm{C} \text { s } / \mathrm{cal}=0.645^{\circ} \mathrm{C} \mathrm{~s} / \mathrm{J}=680^{\circ} \mathrm{C} \mathrm{~s} / \mathrm{btu}
$$


```
    0.09.
        4.09.
        6.06.
        12. 日G.
    16.96 .
    20.90
    24.94
    28.64.
    33.60
    36.96
40.90.
    44.90
    48 . 96.
    52.90
    56.90
    64.69
    68.90
    72.80
    76.60.
    8a.
    84.80
    88.ba
    92. Ba
    96.0.
190.0.
104.09.
1香白.
112.09.
116. 10.
120.09.
124.
128. 1 日6
132. 16 .
136. \(\mathrm{ma}^{6}\)
149. 10.
144.06
148.96.
152.90
156.96
164.99
164. 6 ba .
168.51.
172.80.
176.69 .
186. 0 最.
184 . 64.
188. 60.
192.60.
196. 60.
290.90.
204.04.
298.
212 - 80.
216.0 am.
220. 60.
224.角白
a．3abeale +92
＊－1． 1096
＊-8.9403
－-0.7782
－-6.5454
－－ 0.2795
－-0.0114
－0．2233
－ 0.4526
－ 0.5126
－ 0.5490
－ 0.5158
－ 0.4282
－ 0.3097
－ 0.1546
－ 0.0476
－－ 1.1214
－－ 0.2201
```



```
－-0.3011
－-9.2937
－-0.2353
－-9.1655
－ 0.0 .085
－－
． 0.4663
－0．1295
－0． 1.241
－． 1655
－ 0.1561
－ 0.1296
－ 9.9914
－ 9.9472
－ 9.9631
－-9.9359
－\(-4+9658\)
－-9.9643
－-5.5996
－一G．0855
－－ 6.0711
－－ 0.0512
－-0.0259
－－ 0.017
－0．0197
－ 0.0362
－0．0．0454
－ 0.0499
－ 0.0472
－ 0.0393
－Q． 8278
－ 0.6145
－ \(0 . \mathrm{HE} 12\)
－－ 0.0195
．-6.9195
－－ 0.1252
－-0.0272
－-0.8257
＋－ 1.214
Pg 13
```

Page 16

```
1 REM *** PROGRAM(RS232) IN BASIC TO CALCULATE THERMAL CAPACITANCE ***
5 DIM T$(10),D$
10 REM** MAKE SURE DEFAULTS IN SDEF MENU ARE: NO ECHO, BAUD RATE=2400**
20 OPEN "COM1:2400,N,8,1,CS,DS,CD" AS #1
25 INPUT "TEMP STEP?", TSTEP
30 ON TIMER(10) GOSUB }61
40 PRINT #1, "TEMP?"
50 INPUT #1, OLDCT
55 PRINT "OLD CHAM TEMP=", OLDCT
6 0 \text { TIMER ON}
70 IW=0
80 REM WAITING
90 IF IW=0 GOTO }8
100 PRINT #1, "TEMP?"
110 INPUT #1, CT
115 PRINT "CHAMB TEMP=", CT
120 TIMER ON
130 IW=0
140 REM WAITING
150 IF IW=0 GOTO 140
160 DELCT=ABS(OLDCT-CT)
170 OLDCT=CT
180 IF DELCT>. }25\mathrm{ GOTO 100
190 SCT=CT
200 PRINT "STARTING CHAMBER TEMP=", SCT
210 PRINT #1, "TIME?"
220 INPUT #1, T$
221 H=VAL(LEFT$(T$,2))
222 M=VAL(MID$(T$,4,2))
223 S=VAL(MID$(T$,7,2))
230 PRINT "START TIME OF DAY=", H;":";M;":";S
235 STIME=(H*60*60)+(M*60)+S
236 PRINT "START TIME IN SECONDS=", STIME
240 PRINT #1, "RATE=200"
245 LINE INPUT #1, D$
250 TT=SCT+TSTEP+20
260 PRINT #1, "SET=";TT
265 LINE INPUT #1, D$
270 PRINT #1, "HON"
275 LINE INPUT #1, D$
280 ON TIMER(1) GOSUB }61
290 PRINT #1, "TEMP?"
300 INPUT #1, TC
305 PRINT "CURRENT CHAMBER TEMP=",TC
310 IF TC >= TT-20 GOTO 365
320 TIMER ON
330 IW=0
340 REM WAITING
350 IF IW=0 GOTO 340
360 GOTO 290
365 PRINT #1, "HOFF"
366 LINE INPUT #1, D$
370 PRINT #1, "TIME?"
380 INPUT #1, T$
381 H=VAL(LEFT$(T$,2))
382 M=VAL(MID$(T$,4,2))
383 S=VAL(MID$(T$,7,2))
```

Page 17

```
390 PRINT "END TIME OF DAY=", H;":";M;":";S
395 ETIME=(H*60*60)+(M*60)+S
396 PRINT "END TIME IN SECONDS=", ETIME
410 OLDCT=TC
420 CNT=0
4 3 0 ~ T I M E R ~ O N ~
4 4 0 ~ I W = 0
450 REM WAITING
460 IF IW=0 GOTO 450
470 PRINT #1,"TEMP?"
480 INPUT #1, TC
4 9 0 ~ I F ~ T C > O L D C T ~ T H E N ~ O L D C T = T C ~
500 CNT=CNT+1
5 1 0 ~ I F ~ C N T < 6 0 ~ G O T O ~ 4 3 0 ~
520 PRINT "ENDING CHMBER TEMP=", OLDCT
530 DELTEMP=ABS(OLDCT-SCT)
540 TIME=ETIME-STIME
545 REM**THE POWER SUPPLIED(IN WATTS) SHOULD BE COMPATIBLE TO YOUR TEST SYSTEM**
550 WATTS=1744
555 REM **1 BTU= 1054.368**
560 BTU=(WATTS*TIME)/1054.368
570 CT=BTU/DELTEMP
580 PRINT "DELTEMP=",DELTEMP
590 PRINT "TOTAL HEAT FLOW(BTU)=", BTU
6 0 0 ~ P R I N T ~ " T H E R M A L ~ C A P A C I T A N C E = B T U / D E L T E M P = " , ~ C T ~
6 0 5 \text { STOP}
6 1 0 ~ I W = 1
6 2 0 ~ R E T U R N
630 END
```

PROGRAM CHPID
DIMENSION X(10), $\operatorname{COEF}(10), \operatorname{RTR}(10), \operatorname{RTI}(10)$
CHARACTER BUF(64),IRESP
REAL KH,KP,KI,KD
COMPLEX R1,R2,R3,ANS,ADS,BNS,BDS,CNS,CDS,AS,BS,CS
COMPLEX RESP1S,RESP2S,RESP3S,RESPS,S0,S1,S2,S3
CALCULATES THE TIME ERROR RESPONSE
NOTE: REQUIRES SUBROUTINE ROOT
WHERE E(S)=[1/(1+G(S)H(s))]*R(S)
AND R(S)=1/S FOR STEP INPUT
G.G.C. 1985 SUN ELECTRONIC SYSTEMS INC.

RT=THERMAL RESISTANCE
CT=THERMAL CAPACITANCE
TP=PROBE TIME CONSTANT
KH=HEATER GAIN CONSTANT
KP,KI,KD=PROPORTIONAL,INTEGRAL AND DERIVATIVE COEFFICIENTS (PID)
TC=CHAMBER TEMPERATURE
TAMB=AMBIENT TEMPERATURE
IDEV=6
M=3
RT=673.2
$\mathrm{T}=2.0$
CT=4.04
TP=30
$\mathrm{KH}=1.76$
WRITE(6,3)
FORMAT(' USE DEFAULT RT,CT,TP,KH VALUES [Y/N]')
READ $(5,50)$ IRESP
IF (IRESP.NE.'Y') THEN•
WRITE $(6,4)$
FORMAT(' ENTER Rt,Ct,TP,KH')
$\operatorname{READ}(5,5) \mathrm{RT}$
$\operatorname{READ}(5,5) \mathrm{CT}$
$\operatorname{READ}(5,5) \mathrm{TP}$
$\operatorname{READ}(5,5) \mathrm{KH}$
END IF
TC=RT*CT
WRITE $(6,7)$
FORMAT(' ENTER PID COEFICIENTS')
$\operatorname{READ}(5,5) \mathrm{KP}$
$\operatorname{READ}(5,5) \mathrm{KI}$
$\operatorname{READ}(5,5) \mathrm{KD}$
FORMAT(F14.6)
TAMB=0.0
OPEN(UNIT=9,FILE='LPT1')
C
C CALCULATE DENOMINATOR COEFICIENTS
C WHERE X(N) REPRESENTS $\mathrm{S}^{* *}(\mathrm{~N}-1)$ COEFICIENT
Page 19

```
    X(4)=1.0
    X(3)=1.0/TP+1.0/TC+(KD*KH*RT)/(TP*TC)
    X(2)=1.0/(TC*TP)+(KP*KH*RT)/(TP*TC)+TAMB/(TP*TC)
    X(1)=(KI*KH*RT)/(TP*TC)\bullet
    DO 20 I=0,3
    TEMP=X(I+1)
    WRITE(6,8)I,TEMP
    FORMAT(' S**',I5,' TERM=',E14.6)
    CONTINUE
    FIND ROOTS OF DENOMINATOR
    RTR=REAL ROOTS
    RTI=IMAGINARY ROOTS
    CALL ROOT(X,COEF,M,RTR,RTI,IR)
        WRITE(6,10)IR
    FORMAT(' ROOT ERROR STATUS=',I8)
    WRITE(6,12)
    FORMAT(' REAL IMAJ')
    DO 13 I=1,M
    WRITE(6,14)RTR(I),RTI(I)
    FORMAT(2X,E12.4,2X,E12.4)
    CONTINUE
    THE ROOTS ARE NEGATIVE IF STABLE BUT FOR (S+A) A IS POSITIVE
R1=-CMPLX(RTR(1),RTI(1))
R2=-CMPLX(RTR(2),RTI(2))
R3=-CMPLX(RTR(3),RTI(3))
    CHECK THAT THE ROOTS ARE CORRECT
    S0,S1,S2,S3 REPRESENT DENOMINATOR COEFFICIENTS
    S3=1.0
    S2=R1+R2+R3
    S1=R1*R2+R2*R3+R1*R3
    S0=R1*R2*R3
    WRITE(6,15)S0,S1,S2,S3
    FORMAT(' ROOT CHECK=',4E14.6)
    PERFORM PARTIAL FRACTION EXPANSION SUCH THAT
    N(S)/D(S)=AS/(S+R1) + BS/(S+R2) + CS/(S+R3)
    I.E. FIND AS,BS,CS
    NOTE: MULTIPLE ROOTS AT ZERO ARE NOT ALLOWED OR EXPECTED
    N(S)=S*S+S(1.0/TP+1.0/TC)+1.0/(TP*TC)
    XX=1.0/TP+1.0/TC
    YY=1.0/(TP*TC)
    ANS=R1*R1-R1*XX+YY
    BNS=R2*R2-R2*XX+YY
    CNS=R3*R3-R3*XX+YY
    ADS=1.0*(R2-R1)*(R3-R1)
    BDS=1.0*(R1-R2)*(R3-R2)
```

```
        CDS=1.0*(R1-R3)*(R2-R3)
    WRITE(6,16)ANS,ADS,BNS,BDS,CNS,CDS
        FORMAT(2E12.4,2E12.4/2E12.4,2E12.4/2E12.4,2E12.4)
        AS=-ANS/ADS
        BS=-BNS/BDS
        CS=-CNS/CDS
        WRITE(6,18)AS,BS,CS
    FORMAT(' AS=',2E14.2/' BS=',2E14.2/' CS=',2E14.2)
    CONTINUE
C
C CALCULATE THE TIME RESPONSE WHERE
C E(t)=AS*e**(-R1*t)+BS*e**(-R2*t)+CS*e**(-R3*t)
C
C
C
    WRITE (6,45)
45 FORMAT(' PLOT SAME PID AGAIN [Y/N]')
    READ}(5,50)IRES
```

```
        IF(IRESP.EQ.'Y')GOTO 100
        WRITE (6,46)
```

```
FORMAT(' RUN AGAIN NEW PIDs ? [Y/N]')
READ \((5,50)\) IRESP
IF(IRESP.EQ.'Y')GOTO 6
WRITE \((6,47)\)
FORMAT(' RUN AGAIN ? [Y/N]')
READ(5,50)IRESP
IF(IRESP.EQ.'Y')GOTO 2
FORMAT(1A1)
STOP
END
```

C SUBROUTINE ROOT (XCOF, COF, M, ROOTR, TOORI, IER)
C ERROR STATUS IN IER
C $\quad 0=$ NO ERROR
C $\quad 1=$ ORDER LESS THAN 1
C $2=$ ORDER GT 10
C $\quad 3=$ CANNOT FIND ROOTS
C $\quad 4=$ COEF OF HIGHEST TERM $=0$
DIMENSION XCOF(10), COF(10), ROOTR(10), ROOTI(10)
DOUBLE PRECISION X0, Y0, X, Y, XPR, YPR, UX, UY, V, YT, XT, U
DOUBLE PRECISION XT2, YT2, SUMSQ, DX, DY, TEMP, ALPHA
$\mathrm{N}=\mathrm{M}$
IFIT $=0$
IER $=0$
IF (XCOF (N+1))10, 25, 10
$\operatorname{IF}(\mathrm{N}) 15,15,32$
IER = 1
RETURN
IER = 4
GOTO 20
IER $=2$
GOTO 20
IF (N-10)35, 35, 30
$\mathrm{NX}=\mathrm{N}$
$\mathrm{NXX}=\mathrm{N}+1$
$\mathrm{N} 2=1$
$\mathrm{KJ} 1=\mathrm{N}+1$
DO $40 \mathrm{~L}=1, \mathrm{KJ} 1$
$\mathrm{MT}=\mathrm{KJ} 1-\mathrm{L}+1$
$\operatorname{COF}(\mathrm{MT})=\mathrm{XCOF}(\mathrm{L})$
$\mathrm{X} 0=0.00500101$
$\mathrm{Y} 0=0.01000101$
$\mathrm{IN}=0$
$\mathrm{X}=\mathrm{X} 0$
$\mathrm{X} 0=-10.0 * \mathrm{Y} 0$
$\mathrm{Y} 0=-10.0 * \mathrm{X}$
$\mathrm{X}=\mathrm{X} 0$
$Y=Y 0$
$\mathrm{IN}=\mathrm{IN}+1$
GOTO 59
IFIT $=1$
$\mathrm{XPR}=\mathrm{X}$
$Y P R=Y$
$\mathrm{ICT}=0$
$\mathrm{UX}=0.0$
$\mathrm{UY}=0.0$
$\mathrm{V}=0.0$
$\mathrm{YT}=0.0$
XT $=1.0$
$\mathrm{U}=\mathrm{COF}(\mathrm{N}+1)$
IF (U)65, 130, 65
DO $70 \mathrm{I}=1, \mathrm{~N}$
$\mathrm{L}=\mathrm{N}-\mathrm{I}+1$
TEMP $=\operatorname{COF}(\mathrm{L})$

	$\mathrm{XT} 2=\mathrm{X} * \mathrm{XT}-\mathrm{Y}^{*} \mathrm{YT}$
	$\mathrm{YT} 2=\mathrm{X} * \mathrm{YT}+\mathrm{Y} * \mathrm{XT}$
	$\mathrm{U}=\mathrm{U}+\mathrm{TEMP} * \mathrm{XT} 2$
	$\mathrm{V}=\mathrm{V}+\mathrm{TEMP} * \mathrm{YT} 2$
	$\mathrm{FI}=\mathrm{I}$
	$\mathrm{UX}=\mathrm{UX}+\mathrm{FI} * \mathrm{XT}^{*}$ TEMP
	$\mathrm{UY}=\mathrm{UY}-\mathrm{FI} *$ YT*TEMP
	$\mathrm{XT}=\mathrm{XT} 2$
70	$\mathrm{YT}=\mathrm{YT} 2$
	SUMSQ = UX*UX+UY*UY
	IF (SUMSQ)75, 110, 75
75	$\mathrm{DX}=(\mathrm{V} * \mathrm{UY}-\mathrm{U} * \mathrm{UX}) / \mathrm{SUMSQ}$
	$\mathrm{X}=\mathrm{X}+\mathrm{DX}$
	$\mathrm{DY}=-\left(\mathrm{U} * \mathrm{UY}+\mathrm{V}^{*} \mathrm{UX}\right) / \mathrm{SUMSQ}$
	$\mathrm{Y}=\mathrm{Y}+\mathrm{DY}$
78	IF (DABS(DY)+DABS(DX)-(1.0D-05))100, 80, 80
80	$\mathrm{ICT}=\mathrm{ICT}+1$
	IF (ICT-500)60, 85, 85
85	IF (IFIT) $100,90,100$
90	IF (IN-5)50, 95, 95
95	IER = 3
	GOTO 20
100	DO $105 \mathrm{~L}=1, \mathrm{NXX}$
	$\mathrm{MT}=\mathrm{KJ} 1-\mathrm{L}+1$
	TEMP $=\mathrm{XCOF}(\mathrm{MT})$
	$\mathrm{XCOF}(\mathrm{MT})=\mathrm{COF}(\mathrm{L})$
105	COF (L) = TEMP
	ITEMP $=\mathrm{N}$
	$\mathrm{N}=\mathrm{NX}$
	NX = ITEMP
	IF (IFIT) 120, 55, 120
110	IF (IFIT) 115, 50, 115
115	$\mathrm{X}=\mathrm{XPR}$
	$\mathrm{Y}=\mathrm{YPR}$
120	IFIT $=0$
122	IF (DABS(Y)-(1.0D-4)*DABS(X))135, 125, 125
125	ALPHA $=\mathrm{X}+\mathrm{X}$
	SUMSQ $=\mathrm{X} * \mathrm{X}+\mathrm{Y}^{*} \mathrm{Y}$
	$\mathrm{N}=\mathrm{N}-2$
	GOTO 140
130	$\mathrm{X}=0.0$
	NX $=$ NX-1
	NXX = NXX - 1
135	$\mathrm{Y}=0.0$
	SUMSQ $=0.0$
	ALPHA $=\mathrm{X}$
	$\mathrm{N}=\mathrm{N}-1$
140	$\operatorname{COF}(2)=\operatorname{COF}(2)+$ ALPHA $* \operatorname{COF}(1)$
	$\mathrm{NE}=\mathrm{N}$
	IF (NE.LT.2)NE = 2
145	DO $150 \mathrm{~L}=2$, NE
150	COF (L+1) $=\mathrm{COF}(\mathrm{L}+1)+\mathrm{ALPHA}$ * $\mathrm{COF}(\mathrm{L})-\mathrm{SUMSQ} * \mathrm{COF}(\mathrm{L}-1)$
155	ROOTI (N2) = Y

	ROOTR (N2) $=\mathrm{X}$
	$\mathrm{N} 2=\mathrm{N} 2+1$
	IF (SUMSQ)160, 165, 160
C	
C	
160	$\mathrm{Y}=-\mathrm{Y}$
	SUMSQ $=0.0$
	GOTO 155
165	
	IF (N)20, 20, 45
	END

Page 25

PROGRAM CHISM
CHARACTER IRESP, BUF (64)
REAL KP, KI, KD, KH, NEWTMP
OPEN (UNIT = 9, FILE = 'LPT1')

C
C
C
C
C

CALCULATES TIME RESPONSE OF NONLINEAR-SAMPLED DATA CONTROL SYSTEM
G.G.C. SUN ELECTRONIC SYSTEMS, INC.

CONTINUE
IDEV = 6
$\mathrm{RT}=673.2$
$\mathrm{T}=2.0$
$\mathrm{CT}=4.04$
$\mathrm{TP}=1.0$
$\mathrm{KH}=3.82$
WRITE $(6,3)$
FORMAT ('USE DEFAULT Rt, Ct, Tp, KH VALUES [Y,N]')
READ $(5,8)$ IRESP
IF (IRESP.NE.'Y') THEN
WRITE $(6,16)$
FORMAT (' ENTER Rt, Ct, Tp, Kh')
READ (5, 4)RT
READ (5, 4)CT
READ $(5,4)$ TP
READ $(5,4) \mathrm{KH}$
END IF
XKTMAX $=2.147 \mathrm{E} 12$
WRITE $(6,15)$
FORMAT (' ENTER TAMB, NEWTMP')
READ (5, 4)TAMB
READ $(5,4)$ NEWTMP
FORMAT (E14.6)
WRITE $(6,10)$
FORMAT (' ENTER PID COEFFICIENTS')
$\operatorname{READ}(5,4) \mathrm{KP}$
$\operatorname{READ}(5,4) \mathrm{KI}$
$\operatorname{READ}(5,4) \mathrm{KD}$
WRITE $(6,11)$
FORMAT (' PLOT ON LP [Y,N]')
READ $(5,8)$ IRESP
IF (IRESP.EQ.'Y') IDEV $=9$
XKT $=0.0$
QINT $=0.0$
Q = 0.0
ODTMP $=0.0$
CTL $=0.0$
TCHAM $=$ TAMB
TPINT $=0.0$
TPROBE $=\mathrm{TAMB}$
SETTMP = TAMB
IDCNT $=0$
STEP $=$ ABS (NEWTMP - TAMB)
PM = STEP / 32.0

```
    K = NINT (15*STEP)
    K=1000
    WRITE (IDEV, 12)RT, CT, TP, KH, NEWTMP, TAMB
C ASSUMES SAMPLE RATE T = 2.0 SEC
C KP SINCE IN TC10 1 = FULL ON
C KI SINCE IN TC10 1 = FULL ON AND NO SCALE FACTOR
C KD FOR SAM REASONS AS KP
C
C LIMIT CTL OUTPUT
    IF (CTL.GT.1.0)CTL = 1.0
    IF (CTL.LT.-1.0) CTL = -1.0
    Q = CTL *KH
C
C
C
C
1
C
C
C 9 FORMAT (' CTL, Q = ', 2E12.4)
    DO 5 I = 1,64
    BUF (I) = ''
    I1 = NINT (DELTMP/PM+32)
    I2 = NINT (CTL*32.0+32)
    I3 = NINT (TCHAM/10.0+32)
    I4 = NINT (TPROBE/10.0+32)
    I5 = NINT (KI*XKT832.0+32)
    I6 = NINT (KC*DDTMP*32.0+32)
    IF (I1.LT.1)I1 = 1
    IF (I1.GT.64) I1 = 64
DO \(1 \mathrm{I}=1,20\)
QINT \(=\) QINT \(+\left(Q^{*} 0.1\right)-(\) TCHAM-TAMB \() *(0.1 / \mathrm{RT})\)
TCHAM \(=(\mathrm{QINT} / \mathrm{CT})+\mathrm{TAMB}\)
TPINT \(=\) TPINT \(+((\mathrm{TCHAM}-\mathrm{TPROBE}) * 0.1)\)
TPROBE \(=(\) TPINT/TP \()+\) TAMB
WRITE \((9,30)\) QINT, TCHAM, TPINT, TPROBE
30 FORMAT (' QINT, TCHAM, TPINT, TPROBE = ', 4E12.1)
CONTINUE
WRITE \((9,9)\) CTL, Q
FORMAT (' CTL, Q = ', 2E12.4)
DO \(5 \mathrm{I}=1,64\)
BU (I)
(1)
I3 \(=\) NINT \((\) TCHAM \(/ 10.0+32)\)
I4 \(=\) NINT \((T P R O B E / 10.0+32)\)
I5 = NINT (KI*XKT832.0+32)
IF (I1.LT.1)I1 = 1
IF (I1.GT.64) \(\mathrm{I} 1=64\)
```


Page

```
    IF (I2.LT.1) I2 = 1
    IF (I2.GT.64)I2 = 64
    IF (I3.LT.1) I3 = 1
    IF (I3.GT.64) I3 = 64
    IF (I4.LT.1) I4 = 1
    IF (I4.GT.64) I4 = 64
    IF (I5.LT.1) I5 = 1
    IF (I5.GT.64) I5 = 64
    IF (I6.LT.1) I6 = 1
    IF (I6.GT.64) I6 = 64
    BUF (1) = ' .'
    BUF (32) = ' .'
    BUF (64) = ' .
    BUF (I6) = 'D'
    BUF (I5) = 'I'
    BUF (I4) = 'R'
    BUF (I3) = 'T'
    BUF (I2) = 'Q'
    BUF (I1) = '*'
    ITIME = 2*J
C
C 11111 FORMAT (6I2)
    WRITE (IDEV, 6) ITIME, (BUF(I), I = 1, 64), DELTMP
    FORMAT (I8, 64A1, F8.4)
    CONTINUE
    WRITE (6, 7)
    FORMAT (' RUN AGAIN [Y,N]')
    READ (5, 8) IRESP
    FORMAT (1A1)
    IF (IRESP.EQ.'Y') GOTO 100
STOP
END
```

